Involvement of microtubules, p38, and Rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction.
نویسندگان
چکیده
2-Methoxyestradiol (2ME), a promising anti-tumor agent, is currently tested in phase I/II clinical trial to assess drug tolerance and clinical effects. 2ME is known to affect microtubule (MT) polymerization rather than act through estrogen receptors. We hypothesized that 2ME, similar to other MT inhibitors, disrupts endothelial barrier properties. We show that 2ME decreases transendothelial electrical resistance and increases FITC-dextran leakage across human pulmonary artery endothelial monolayer, which correlates with 2ME-induced MT depolymerization. Pretreatment of endothelium with MT stabilizer taxol significantly attenuates the decrease in transendothelial resistance. 2ME treatment results in the induction of F-actin stress fibers, accompanied by the increase in myosin light chain (MLC) phosphorylation. The experiments with Rho kinase (ROCK) and MLC kinase inhibitors and ROCK small interfering RNA (siRNA) revealed that increase in MLC phosphorylation is attributed to the ROCK activation rather than MLC kinase activation. 2ME induces significant ERK1/2, p38, and JNK phosphorylation and activation; however, only p38 activation is relevant to the 2ME-induced endothelial hyperpermeability. p38 activation is accompanied by a marked increase in MAPKAP2 and 27-kDa heat shock protein (HSP27) phosphorylation level. Taxol significantly decreases p38 phosphorylation and activation in response to 2ME stimulation. Vice versa, p38 inhibitor SB203580 attenuates MT rearrangement in 2ME-challenged cells. Together, these results indicate that 2ME-induced barrier disruption is governed by MT depolymerization and p38- and ROCK-dependent mechanisms. The fact that certain concentrations of 2ME induce endothelial hyperpermeability suggests that the issue of the maximum-tolerated dose of 2ME for cancer treatment should be addressed with caution.
منابع مشابه
MAP kinases in lung endothelial permeability induced by microtubule disassembly.
Lung endothelial barrier function is regulated by multiple signaling pathways, including mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK) 1/2 and p38. We have recently shown involvement of microtubule (MT) disassembly in endothelial cell (EC) barrier failure. In this study, we examined potential involvement of ERK1/2 and p38 MAPK in lung EC barrier dysfuncti...
متن کاملMechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability.
Pathological lung overdistention associated with mechanical ventilation at high tidal volumes (ventilator-induced lung injury; VILI) compromises endothelial cell (EC) barrier leading to development of pulmonary edema and increased morbidity and mortality. We have previously shown involvement of microtubule (MT)-associated Rho-specific guanine nucleotide exchange factor GEF-H1 in the agonist-ind...
متن کاملP38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury
Excessive activation of inflammation and the accompanying lung vascular endothelial barrier disruption are primary pathogenic features of acute lung injury (ALI). Microtubule-associated protein 4 (MAP4), a tubulin assembly-promoting protein, is important for maintaining the microtubule (MT) cytoskeleton and cell-cell junctional structures. However, both the involvement and exact mechanism of MA...
متن کاملIloprost improves endothelial barrier function in lipopolysaccharide-induced lung injury.
The protective effects of prostacyclin and its stable analogue iloprost are mediated by elevation of intracellular cyclic AMP (cAMP) leading to enhancement of the peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested the hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lipopolys...
متن کاملTransforming growth factor-beta1-induced endothelial barrier dysfunction involves Smad2-dependent p38 activation and subsequent RhoA activation.
Lung edema due to increased vascular permeability is a hallmark of acute lung injury and acute respiratory distress syndrome. Both p38 and RhoA signaling events are involved in transforming growth factor (TGF)-beta1-increased endothelial permeability; however, the mechanism by which these pathways cooperate is not clear. In this study, we hypothesized that TGF-beta1-induced changes in endotheli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007